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A mathematical model of heat transfer in a bunch of crystallizing polymer fibers is suggested and a numerical 
analysis of fiber stretching in an open medium and in an axisymmetric channel is carried out. 

One of the important problems in the production of synthetic fibers is determination of the dependences 

between the molding conditions and the internal processes in the fibers that determine the structure and quality 

of the fibers. Among the physical phenomena occurring in a melt in molding, crystallization plays an essential role 

in the development of the fiber properties. An interdependence is observed among the processes of crystallization, 

heat transfer, fiber stretching, and degree of orientation of the polymer molecules. Account for these phenomena 

and determination of their influence on the crystallization process represent a rather complicated problem because 

of the absence of complete kinetic equations that take into consideration the variety of molecular and supermolecular 

structures of polymers. 

Different variants of mathematical modeling of the crystallization of polymer materials are known - from 

the simple Avrami models to more complicated ones described by integrodifferential equations [ 1 - 4 ]. Among this 
diversity a mathematical model [2, 3 ] that is distinguished by its simplicity and is represented by the equation for 

the degree of crystallinity 

dO _ K (T) Q). - ~) (1) 
dt 

where K depends on the temperature, attracts attention. For processes involving fiber stretching these quantities 

depend on the molecular orientation, which is determined by the internal stresses in the fibers. A number of works, 
whose results are reported in monograph [5 ], are devoted to the establishment of such dependences and the 

possibility of their use for calculating the crystallization of single threads. In the present work these developments 

are used to construct a mathematical model of molding a bunch of fibers with account for the process of polymer 

crystallization. Results of numerical calculations of real schemes of production of complex fibers are reported. 

Formulation of the Problem. For an axisymmetric bunch with radius Rb(X) consisting of N elementary 

fibers with radii Rfi b (x), within the framework of the model of a filtration flow in a porous body and a boundary 
layer the basic equations of convective heat transfer are as follows [6, 7 ]: 

-1 ( OUI OUl ) Op (;3 ( O U l )  
e Ul -"~X-X q- Vl ---~r- r =-e- f f -~+v-r-~r  r--~- r + R u ,  

-1 ( O T 1 0 T 1 )  O ( O T I )  
e pc Ul--~-x +Vl - -~ r  =~t-~r r---~- r +e - IRT ,  (2) 

0 (rul) 0 (rvl) 
- - + - -  - 0 ,  Ox Or 

where R U and RT characterize the force and heat interaction between a gas and a fiber: 
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Analytical expressions for ~fib and qfib are obtained in [6, 7 ]. 

A zone of uniform gas flow is adjacent to the bunch on its outer side. The equations of motion and heat 

transfer in this zone are of the same form as (2) at e = 1 and Ru  = RT = 0. Similarly to [6, 7 ], conjugation 

conditions are set for the filtration parameters and quantities in the external region at the bunch boundary. In 

order to close the system of equations (2), it is necessary to determine the distributions of radii, velocities, and 

temperatures of the fibers in the bunch volume. Using the Maxwell liquid model [5], we write the equation of 

motion and the constitutive equation for a polymer fiber: 

dUfi b d 
Q ~ = pqS + ~ (so-) - 2,TrRfibZfi b , 

(3) 

dUfi b Ufi b da (4) 
O- = f l  d x  - f l "  G d x  " 

Calculations of molding of single threads show that the force caused by the thread 's  own weight is 

insignificant. Integrating Eq. (3) without this force, we arrive at the expression 

x (5) 
So" - QUfi b = F + 2.7r, f Rfib'CfibdX, 

0 

which is used below in calculations for the specified pulling force F. As the kinetic equation describing the crystal- 

lization process of polymer fibers, we use the expression [5 ] 

dO 
Ufib -~x = KT KA (0. -- 9 ) ,  (6) 

which differs from Eq. (1) by the fact that K = KTKA. The parameter KT depends only on the temperature and 

determines the rate of crystallizarion without stretching, and the second cofactor depends on the birefringence, 

which is a measure of fiber stretching and molecular orientation of the polymer. For polyethyleneterephthalate 

(PETP) the dependences KT, KA are as follows [5 ]: 

[ 683 4.53"105 ] (7) 
K T = exp 9.34 T -  43 (T + 273) (300 - T) ' 

1.2.10 6 
K a = e x p  ( T + 2 7 3 ) ( 3 0 0 -  T) • 

1 + 160 (An) 2 (T + 273)/(300 - T) 

According to [2, 5 ] at low internal stresses of stretching a the birefringence depends lineary on it, i.e. 

An = ma ,  (9) 

Here the stress must be determined from the equations for fiber motion (4), (5). 
We supplement the presented system with the heat transfer equation for a single thermally thin thread 

with account for the phase heat release upon crystallization: 
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Fig. 1. Distributions of velocity and degree of crystallinity of fibers along the 

zone of molding of a bunch in an unbounded medium (a) and in a column 

(b): solid lines, velocities; dashed lines, degreeof crystallinity; s, bunch axis; 

i, 1/2 radius; p, bunch surface, x, m. 

dTfi b 
OCfib dx - 2"TrRfibqfib + QH d*gdx. (10) 

Equations (4)-(10) describe the problem of moulding a single crystallizing thread. The shear stress /:fib 

and the heat flux qfib on a fiber surface determine the external conditions of molding. We determine these quantities 

by solving system of equations (2). Simultaneously solving the problem of molding (4)-(10) for the calculated zfi b 

and qfib we may calculate the parameters of the fibers formed in the bunch volume. To test the crystallization model 

under consideration, we predicted the molding process for a single fiber by using criterial relations for friction and 

heat transfer [5 ]. Results of the calculations representing the distributions of temperatures, velocities, degree of 

crystallinity, and birefringence along a molding section were in satisfactory agreement with the data reported in 

[5 ]. This confirmed that the above equations are adequate for the mathematical model used in [5 ]. 

Open Bunch. An open bunch means a bunch of fibers moving from a spinneret surface to a receiving unit 

in unrestricted space with known distributions of velocities and temperatures at infinity. In this case the initial 

system of equations is supplemented with the boundary conditions at infinity u2(c~) = 0, T2(oo) = To, and the 

governing parameters are as follows: Rfib 0 = 0.05 m; R b 0 = 0.000125 m; N = 100; Ufib 0 = 0.5 m/sec;  Tfib 0 = 

290 and 280~ Pfib = 1356-0.STfib kg/m3; Crib = 1260 + 2.52Tfib J / (kg .K) ;  H = 50,300 J/kg;  ,9, = 0.4; m = 
5.3.10 -9 Pa -1. The longitudinal viscosity for PETP is determined from the following relation [5 ]: 

fl = 0.725 exp [5260.0/(Tfi b + 273) l (1 + 99 *9). 

System of equations (2) together with the equations of motion and heat  transfer of a homogeneous gas was 

integrated numerically by the method of [8 ]. To integrate Eqs. (4)-(6), (10), the extrapolation method [9 ] was 

used. 

Figures la  and 2a present calculation results for N = 100 and different values of the pulling force F. As 
an analysis of the results shows, for an open bunch the processes of fiber pulling and crystallization depend almost 
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Fig. 2. Distribution of temperature and birefringence of fibers along the zone 

of molding of a bunch in an unbounded medium (a) and in a column (b): solid 

lines, fiber temperature; dashed lines, birefringence. T, ~ 

completely on the hydrodynamic interaction between the system of fibers and the cooling medium. Thus, as a result 

of formation of a flux in the bunch volume intense air ejection from the outer to the central regions occurs, which 

causes quite rapid cooling of the outer fibers. As a consequence, the birefringence and the degree of crystallinity 

for them become close to zero and the velocity of motion rapidly attains its limiting value due to a substantial 

increase in the longitudinal viscosity of the polymer. After becoming cooled on the initial section, the central fibers 

reach a practically thermostabilized zone with a high temperature level. Here substantial stretching of the fibers is 

observed. As a result, the birefringence undergoes a rapid increase, which leads to intense crystallization of the 

polymer. The phase heat released here causes small temperature jumps in the central threads. Owing to an increase 

in the longitudinal viscosity the velocity of the fibers becomes almost constant along the molding space after crys- 

tallization. At a distance from the bunch center the fiber temperature decreases and crystallization proceeds more 

smoothly, and therefore in the middle of the bunch, fibers with a higher degree of stretching, compared to the 

center, may be obtained. 

The results presented allow a judgment about the influence of the pulling force F on the molding and heat 

transfer of a complex thread. As is seen from the figures, an increase in F results in more pronounced growth of 

the birefringence, which displaces the onset of crystallization upward along the thread. Simultaneously, the 

temperature of the onset of crystallization rises, the velocity increases sharply, and, as a consequence, the released 

heat causes more abrupt jumps in the fiber temperatures. In fiber stretching, the influence of the pulling force is 
manifested in a somewhat paradoxical form: with an increase in the pulling force the final velocity of the crystal- 

lizing fibers in the bunch decreases. This is associated with the influence of the degree of crystallinity on the 

longitudinal viscosity - fl increases sharply with an increase in the degree of crystallinity. Therefore in order to 

obtain well-stretched threads with a small final diameter, it is necessary to increase the heat transfer rate while 
increasing the pulling force. Calculations performed for a lower initial temperature have shown (these results are 

not given in the figures) that the onset of crystallization is displaced downward along the flux and occurs at lower 
temperatures. Changing the quantity of fibers in the bunch does not lead to marked differences in the described 

regularities of the behavior of the temperatures, the birefringence, and the degree of crystallinity. 
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Bunch in a Channel. For numerical modeling of the crystallization of a fiber bunch in a blown column the 

system of equations (2), (4)-(10) was supplemented with the boundary conditions on the column wall u2(R c) = 0, 

Tz(Rc) = Tw. Calculations were made for the following parameters: Rc = 0.1 m; Qg = 0.063 ma/sec; Tw = 20~ 

F = 0.003 and 0.004 N. The remaining quantities were the same as irj the case of an open bunch. Calculation 

results are given in Figs. lb and 2b. As is seen from the behavior of the fiber temperatures, heat transfer is more 

intense in the case of the adopted relations than in an open channel. As a result, the onset of crystallization is 

shifted farther downstream. Since there is practically no temperature drop over the bunch thickness, the crystal- 

lJzation proceeds with virtually the same intensity for the all fibers. The temperature of the onset of crystallization 

is somewhat lower, the process itself proceeds at a lower rate, and there are no temperature jumps. The velocity 

distribution of the fibers is indicative of the uniformity of the conditions in the bunch. An increase in the pulling 
force exerts a weak influence on the heat transfer but, as in the case of open cooling, it displaces the onset of 

crystallization upstream. The distributions of birefringence and the degree of crystallinity become steeper and an 

isothermal zone develops in the temperature distributions. The displacement of the crystallization point upward 

also causes a marked increase in the final diameter of the obtained fibers. 

The problems discussed are a first approximation to a solution of the complete problem of molding of 

complex threads, for which the pulling force distributions over the bunch radius must be corrected proceeding from 

the boundary conditions at the end of the molding zone. On the whole, the calculations performed have shown the 

sensitivity of the crystallization process to the conditions under which it proceeds and the difference in the 

regularities of motion and heat transfer of threads in open bunches and in bunches moving in a column. When the 

suggested model is used in practice, it is necessary to refine the corresponding kinetic dependences in each 

particular case. 

N O T A T I O N  

x, r, coordinate system; u, v, velocities; p, density; p, pressure; T, temperature; c, heat capacity; v, 

kinematic viscosity; 2, thermal conductivity; 0;-glegree of crystallinity; An, birefringence; H, heat of the phase 

transition; e, bunch porosity; a, stress of fiber stretching; Zfib, qfib, friction and heat flux on the fiber surface; S, 

cross-sectional area of the fiber; Q, polymer consumption per spinneret; Rfib , fiber radius; Rb, bunch radius; Rc, 

column radius; F, force;/3, longitudinal viscosity; G, shear modulus; N, quantity of fibers in the bunch. Subscripts: 

fib, fiber; 0% outer medium; w, Channel wall; 0, initial cross section; 1, filtration parameters; 2, zone of uniform 

flow. 
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